Separation of AC0[⊕] Formulas and Circuits

نویسندگان

  • Benjamin Rossman
  • Srikanth Srinivasan
چکیده

This paper gives the first separation between the power of formulas and circuits of equal depth in the AC0[⊕] basis (unbounded fan-in AND, OR, NOT and MOD2 gates). We show, for all d(n) ≤ O( logn log logn ), that there exist polynomial-size depth-d circuits that are not equivalent to depth-d formulas of size no(d) (moreover, this is optimal in that no(d) cannot be improved to nO(d)). This result is obtained by a combination of new lower and upper bounds for Approximate Majorities, the class of Boolean functions {0, 1} → {0, 1} that agree with the Majority function on 3/4 fraction of inputs. AC0[⊕] formula lower bound. We show that every depth-d AC0[⊕] formula of size s has a 1/8-error polynomial approximation over F2 of degree O( 1 d log s) d−1. This strengthens a classic O(log s)d−1 degree approximation for circuits due to Razborov [12]. Since the Majority function has approximate degree Θ( √ n), this result implies an exp(Ω(dn1/2(d−1))) lower bound on the depth-d AC0[⊕] formula size of all Approximate Majority functions for all d(n) ≤ O(logn). Monotone AC0 circuit upper bound. For all d(n) ≤ O( logn log logn ), we give a randomized construction of depth-d monotone AC0 circuits (without NOT or MOD2 gates) of size exp(O(n1/2(d−1))) that compute an Approximate Majority function. This strengthens a construction of formulas of size exp(O(dn 1 2(d−1) )) due to Amano [1]. 1998 ACM Subject Classification F.1.3 Complexity Measures and Classes

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Certifying polynomials for AC0[⊕] circuits, with applications

In this paper, we introduce and develop the method of certifying polynomials for proving AC0[⊕] circuit lower bounds. We use this method to show that Approximate Majority cannot be computed by AC0[⊕] circuits of size n1+o(1). This implies a separation between the power of AC0[⊕] circuits of nearlinear size and uniform AC0[⊕] (and even AC0) circuits of polynomial size. This also implies a separa...

متن کامل

Poly-logarithmic independence fools AC circuits

We prove that poly-sized AC0 circuits cannot distinguish a poly-logarithmically independent distribution from the uniform one. This settles the 1990 conjecture by Linial and Nisan [LN90]. The only prior progress on the problem was by Bazzi [Baz07, Baz09], who showed that O(logn)-independent distributions fool poly-size DNF formulas. Razborov [Raz08] has later given a much simpler proof for Bazz...

متن کامل

Separation of AC^0[oplus] Formulas and Circuits

This paper gives the first separation between the power of formulas and circuits of equal depth in the AC[⊕] basis (unbounded fan-in AND, OR, NOT and MOD2 gates). We show, for all d(n) ≤ O( logn log logn ), that there exist polynomial-size depth-d circuits that are not equivalent to depth-d formulas of size n (moreover, this is optimal in that n cannot be improved to n). This result is obtained...

متن کامل

Multiparty Communication Complexity and Threshold Circuit Size of sfAC0

We prove an nΩ(1)/4k lower bound on the randomized k-party communication complexity of depth 4 AC0 functions in the number-on-forehead (NOF) model for up to Θ(log n) players. These are the first nontrivial lower bounds for general NOF multiparty communication complexity for any AC0 function for ω(log logn) players. For nonconstant k the bounds are larger than all previous lower bounds for any A...

متن کامل

Håstad’s Separation of Constant-Depth Circuits Using Sipser Functions

This note contains a proof of the exponential separation of depth-d circuits from depth(d + 1) circuits due to Håstad [Has89]. The separating functions are the Sipser functions, denoted fd+1,n. We use a simplified proof of Håstad’s second switching lemma due to Neil Thapen [Tha09].

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Electronic Colloquium on Computational Complexity (ECCC)

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2017